

Welcome to the Keysight Technologies Students Workshop

08 November 2022 Universität Stuttgar

If you want to get a certificate of the workshop completion, please register here:

Workshop

Fundamentals of Arbitrary Waveform Generation (AWG)

Vitaly Morarenko

Solutions Engineering Keysight Technologies

Arbitrary Waveform Generation Fundamentals

Frequency Response Correction

In-System Calibration

Conclusion & Summary

Arbitrary Waveform Generation Fundamentals

Frequency Response Correction

In-System Calibration

Conclusion & Summary

History of Arbitrary Waveform Generators

From analog to digital signal generation

Sep 2018

Arbitrary Waveform Generator with 120 GSa/s 45 GHz analog bandwidth

HP 618

HP 8770A back view

Keysight M8194A

An ARBITRARY Waveform Generator

The most versatile signal scenario generator possible

It demonstrates the flexibility you can have with an AWG. Whatever you can described mathematically you can generate.

...you are only limited by your imagination!

AWG in Comparison to Other Instruments

(for same bandwidth)

Find the AWG That's Right For You

Push your design to the limit

The M8100 Series arbitrary waveform generators (AWGs) offer a level of versatility that enables you to set up complex real-world signals — whether you need precise signals to characterize the performance of a design or need to stress a device to its limits. From lowobservable radar to high-density communications, testing is more realistic with our precision arbitrary waveform generators.

M8190A 12 GSa/s **M8195A** 65 GSa/s

M8196A 92 GSa/s **M8194A** 120 GSa/s

Keysight M8199A, 256 GSa/s, up to 70 GHz The World's Highest Performing AWG

Push your design to the limit

In order to create next generation technology, advanced research engineers require a new level of stimulus performance. Whether testing the discrete components of a coherent optical system or experimenting with terabit transmission, you need the highest speed, bandwidth, precision, and flexibility to meet the challenges of industry-leading applications. The unmatched capabilities of the M8199A enable you to take your designs to a new level.

Keysight M8190A Arbitrary Waveform Generator

High-quality signal generation is the foundation of reliable and repeatable measurements. No matter the application, you must be confident that you are testing your device, not the signal source. The **high dynamic range and excellent vertical resolution** of the M8190A provides the accuracy and repeatability required to achieve the most reliable measurements possible.

Key Benefits of the M8190A AWG

Get the resolution you need

- Precision AWG with two DAC settings to handle multiple applications
 - 14-bit resolution at 8 GSa/s used to achieve highest vertical resolution
 - 12-bit resolution with up to 12 GSa/s used to achieve highest sample rate
- Spurious-free-dynamic range (SFDR) up to 90 dBc ensures tones clearly stand out
- Analog bandwidth up to 5 GHz allows you to mimic analog imperfections with custom ISI
- 3 selectable output amplifier paths:
 - **Direct DAC** optimized for best SFDR & high definition
 - DC optimized for serial/data time domain applications
 - AC optimized to generate high voltage, high bandwidth signals
- 1 or 2 channels per 2 slot module (sync up to 12 channels)

KEYSIGHT

Theory of AWG Operation

Key Blocks and Specifications

Theory of AWG Operation

Key Blocks and Specifications: Memory

AWG Basics: Memory

Theory of AWG operation

AWG Memory and Granularity

Theory of AWG operation

Waveform memory access architectures are influenced by memory technology and access speed.

- a) Fast enough SRAM can be directly connected to the DAC
- b) If conversion speed is too high then it is possible to transfer more than one sample in a memory access cycle by widening the bus and using a multiplexer close to the DAC

The granularity reflects the number of sample that transfered in parallel from Memory to DAC

Granularity and Min Length of Sample Memory of M8190A

Sample memory						
– Standard	128 MSa per channel					
 Option 02G 12 bit mode 	2048 MSa per channel					
 Option 02G 14 bit mode 	1536 MSa per channel					
Option SEQ offers the enhanced sequencing functionality described below						
Minimum segment length	320 samples in 12 bit mode; 240 samples in 14 bit mode					
Waveform granularity	64 samples in 12 bit mode; 48 samples in 14 bit mode					

AWG without Sequencing

- Only a **single** waveform segment is available
- Waveform segment can be up to full memory size

Infinite loop

AWG with Sequencing

How do we achieve longer playtimes?

The Waveform Sequencer is where the waveform segments are arranged (sequenced) to create the desired waveform

<u>Memory ÷ sample rate ≠ playback time</u>

Sequencing – Theory of Operation

- Start-of-Sequence and End-of-Sequence frame the sequence
- Data entries refer to a waveform segment
- Idle entries implement a sample-accurate delay with a defined sample value
- Advance modes determine how execution proceeds from one entry to the next
- Loop counts determine number of repetitions per segment

...and how does it work internally?

AWG with Sequencing

Using Scenarios to increase playback time

Loop 5 times

Advancement Modes of Sequencing

Advancing from one segment/sequence to the next can be...

- Automatic
 - Loop N times, then go to next segment/sequence (un-conditional)
- Conditional
 - Loop until an event occurs, then go to next segment/sequence

- Loop N times, then wait until an event occurs before going to the next segment/sequence
- Single
 - Same as "Repeat", but wait for an event on every loop

It's time for a demo...

Trigger Modes of Sequencing

All of the previously mentioned cases can be combined with the following trigger modes. This applies to **segments** or **sequences**.

Selection of segment/sequence to be generated

Selection of segment/sequence can be determined by...

Pre-defined sequence

- If the order of waveform segments is known ahead of time, it can be set up as a "sequence"
- Dynamic Control Port
 - The dynamic control port on the front panel allows you to select one of 2¹³ (2¹⁹) segments/sequences
 dynamically at runtime by applying a digital pattern to the dynamic control port connector

Software

 Instead of applying a digital pattern to the dynamic control port, you can also select a segment/sequence using software by sending a command to the firmware

In all cases, transitions are "seamless" - without any gaps

Sequencing – "Memory Ping-Pong"

Execute alternately Segment 1 and 2. When one segment is played the other one is loaded with a new waveform.

Load Segment 1. Start signal generation in dynamic mode. \rightarrow Segment 1 is played (Looped until next is selected or played once in triggered mode).

Repeat:

Load Segment 2. Switch to play Segment 2. Load Segment 1. Switch to play Segment 1.

Theory of AWG Operation

Key Blocks and Specifications: Sampling rate

AWG Sampling Basics

Sampling Factor

0.5

-0.5

-1.5

ñ.

-13

ã

0.5

sampling factor 3

1.5

1.5

time (sec)

time (sec)

Sample Rate determines **Modulation Bandwidth** = typically less than 1/2 of sample rate, e.g. $12 \text{ GSa/s} \rightarrow 5 \text{ GHz}$ BW

3.5

3.5

25

2.5

0.5

-1.5

0.5

-1.5

0.5

1.5

time (sec)

2.5

3.5

ŝ

Nyquist Theorem in the Time and Frequency Domains

Nyquist Sampling Theorem

AWG Sampling Basics

Theoretical vs. Real output

Theory of AWG Operation

Key Blocks and Specifications: Reconstruction Filter

AWG Sampling Basics: Reconstruction Filter

Theory of AWG operation

Why is a high sampling frequency always good?

100 to 300 MHz multitone & 1 GSample/s sample rate

Keysight Arbitrary Waveform Generat	or - M8190, MY55701027	
File View Utilities Tools Help		vember 20, 2017 9:37:59 AM
Clock Output Aux Standard	🔺 Multi-Tone & Noise 📃 💷 💌	Measure Math Analyze Utilities Demos Help
Channel 1	File Preset	
Mode: 14 Bit	Sample Rate (Hz) 1e9	□ → → → → → → → → → → → → → → → → → → →
Format: DNRZ	# of samples 6000 📝 Auto	
Amplitude: 700.00 mV	# of tones 101 (Enter 0 for Noise)	
Offset: 0.00000 V	Start Frequency (Hz) 100e6 (*)	
Diff. Offset: 0	Stop Frequency (Hz) 300e6 (*)	
Reduced Noise Floor	Tone spacing (Hz)	0.0 -10.0 -20.0 -30.0 -30.0 -20.0 -30.0 -20.0 -30.0 -20.0 -30.0 -20.0 -30.0 -50.0 -50.0 -50.0 -50.0 -50.0 -60.0 -70.0 -70.0 -80.0 -7
	Start 0.0 Hz Stop 10.0 GHz	CF 5.00 GHz Span 10.0 GHz RBW 1.00 MHz Preset Mark Peaks 1 > 4
		V1(f1) ····································

KEYSIGHT

100 to 300 MHz multitone & 2 GSample/s sample rate

<section-header> Keysight Arbitrary Waveform Generato</section-header>	or - M8190, MY55701027	1							
File View Utilities Tools Help				20, 2017 9:39:33 AM					
Clock Output Aux Standard	Multi-Tone & Nois	e 🗖		e Math Analyze Utilit	ties Demos He	elp 1	9:39 AM 1/20/2017 AVA KE TECH		
Channel 1									8
Mode: 14 Bit	Sample Rate (Hz)	2e9		a let. Ma blef at roteste fill febra	i iii alaa a. h.		iterreter til k Nach vara villa	las le bastal la la	352 mV
Format: DNRZ	# of samples	6000	V Auto						11.7 mV
Amplitude: 700.00 mV	# of tones	101	(Enter 0 for Noise)) ns -150 ns	0.0 s 15	0 ns 300 ns	450 ns	600 ns 750	-329 mV 0 ns 1
Offset: 0.00000 V	Start Frequency (Hz)	100e6 ((*)	<u>// +</u>	FFFFF				
Diff. Offset: 0	Stop Frequency (Hz)	300e6 ((*)						
	Meas Vertical Meas Meas uren	X1 X2 X1 X2 X0.00 MHz 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 GHz 3.0	International Action of the second	5.0 GHz 6.0	он от	the former of th		0.0 -10.0 -20.0 -30.0 -40.0 ਛੂ -50.0 -60.0 -70.0 GHz f1
	Sta	rt 0.0 Hz Stop 10	0.0 GHz CF 5.00	GHz Span 10.0 GHz	RBW 1.00 MH	z Preset 🗌 Ma	ark Peaks 🕕	1	
	Resi	ults: Markers							\otimes
	X1(f1)	100.00000 MHz			Y1(f1)				
	X2(f1)	300.00000 MHz 200.00000 MHz			Y2(f1)				
	<u>1</u> /ΔX	5.0000 ns			ΔΥ/ΔΧ				

KEYSIGHT
100 to 300 MHz multitone & 4 GSample/sec sample rate

jsę	Keysight Arbitrary	Waveform Generat	or - M8190, MY5570102	7							
Fi	ile View Utilities	; Tools Help				, 2017 9:41:18 AM			9:40 AM		
						Math Analyze Util	ities Demos	Help	11/20/2017		
P	Clock Output	Aux Standard	Multi-Tone & Noi	se 📃 🗆			$\sim\sim$		z 🛛 🗂 🖵 12 mV	\mathbf{D}	₹ ₹
	Channel 1		File Preset								8
	Mode:	14 Bit	Sample Rate (Hz)	4e9]		lahi. Walahi di	an an taldadal a darah	ulul destacements budget.	หนายไม่ เป็น เหม	352 mV
	Format:	DNRZ	# of samples	6000	Auto	ational property				and the top of the	-329 mV
	Amplitude:	700.00 mV	# of tones	101	(Enter 0 for Noise)	s -150 ns	0.0 s	150 ns 300	ns 450 ns	600 ns	750 ns 1
	Offset:	0.00000 V	Start Frequency (Hz)	100e6	(*)		FFFF				
	Diff. Offset:	0	Stop Frequency (Hz)	300e6	(*)						0.0
	Deduced No	ing Flags	Tone spacing (Hz)	2e6							-10.0
	Poducod Nr	NG LIOOF	Vertical Meas								-20.0 -30.0 -40.0 ∰ -50.0 -60.0 -70.0
			re o	Hz 1.0 GHz	2.0 GHz 3.0 0	GHz 4.0 GHz	5.0 GHz	6.0 GHz 7.0 G	GHz 8.0 GHz	9.0 GHz 1	10 GHz f1
			Sta	rt 0.0 Hz Stop 1	10.0 GHz CF 5.00	GHz Span 10.0 GHz	RBW 1.00	MHz Preset	Mark Peaks	»	
			Res	ults: Markers							\otimes
			X1(f1)	100.00000 MHz			Y1(f1)				
			X2(f1)	300.00000 MHz			Y2(f1)				
			ΔΧ	200.00000 MHz			ΔΥ				
			- 1/Δx	5.0000 hs							

100 to 300 MHz multitone & 8 GSample/s sample rate

JSF.	Keysight Arbitrar	y Waveform Generat	or - M8190, MY5570102	7											
F	le View Utiliti	es Tools Help					onday, Nov	vember 20, 2	2017 9:42:4/	8 AM					
	Clock Output	Aux Standard	承 Multi-Tone & Noi	se			ıy Trigger	Measure Ma	ath Analyze	Utilities Dem	os Help	9 11	1:42 AM /20/2017		
	Channel 1		File Preset				GSa/s 1	20 kpts	~~~~		3	33.0 GHz	Ţ_ 1 2 mV		₩¥
	Mode:	14 Bit	Sample Rate (Hz)	8e9			∕ 			±					352 mV
	Format:	DNRZ	# of samples	12000	V Auto										11.7 mV
	Amplitude:	700.00 mV	# of tones	101	(Enter 0 for Noise)		0450 ns	-300 ns	-150 ns	0.0 s	150 ns	300 ns	450 ns	600 ns	-329 mV 750 ns 1
	Offset:	0.00000 V	Start Frequency (Hz)	100e6	(*)			2 🕕 » 🗆]						
	Diff. Offset:	0	Stop Frequency (Hz)	300e6	(*)		n 🕂	џ							
	Reduced N	Joise Floor	Tone spacing (Hz)	2e6											0.0 -10.0
					S 0000 ml2 Vertical Meas 0 Hz 1.0 0 Hz 1.0 Start 0.0 Hz 10.00000 MH 1/∆X 5.0000 ns	stop	¹¹ կրի (Նոյ Մեսեւ) 2.0 GHz (10.0 GHz	<mark>ություն արտերին ինդերարություն է։</mark> 3.0 GHz CF <mark>5.00 GHz</mark>	י <mark>וויז אין דיייזער אין אין אין אין אין אין אין אין אין אין</mark>	1 ¹¹ 110111111 (на 1011- 5.0 GHz GHz RBW 1.0 У1(f1) У2(f1) ДУ ДУ/ДХУ	ու վերեց թերվել, 6.0 GHz 00 MHz Pro	1	8.0 GHz k Peaks () >	 <mark> .411 111 11 11 11 11 11 11 11</mark>	-20.0 -30.0 -50.0 -50.0 -60.0 -70.0 10 GHz f1

It's time for a demo...

How To Get From a Bit/Symbol Pattern To Samples

• In a "one-sample-per-symbol" architecture (e.g. in a BERT-PG), it is straight forward:

 In an AWG, you typically have more than one sample per symbol and the ratio (sample rate / symbol rate) is no necessarily an integer

Algorithm #1 – Variable Transition Time

How to get from symbols to samples

- Combine "straight line" and "cosine" waveform segments, then place sampling points on the calculated shapes
- Depending on the desired rise and fall time, the cosine segments are "squeezed" or "expanded"
 - Slow transition time:
 - Fast transition time:
- With transition time = 1 UI, the pulse shape is very close to a Raised Cosine with alpha = 1 (i.e. sinusoidal)
- This algorithm works well with large oversampling ratios (i.e. low baudrates)
 KEYSIGHT

nts, 0 1 0 1 1 0

Algorithm #2 – Using a Pulse Shape Filter

How to get from symbols to samples

- For RF signals, a **pulse-shape filter** is usually applied in order to reduce the occupied bandwidth. The same approach can be used for NRZ or PAM-n signals to reduce their bandwidth
- Each symbol is treated as a dirac pulse, convoluted with impulse response of the pulse shape filter, typically a raised cosine or root-raised-cosine
- Example: impulse response of a raised cosine filter with alpha = 0.3
- The final waveform is the sum of the impulse responses of all symbols

Multi-Level signals (PAM-n)

How to get from symbols to samples

- Both previously mentioned algorithms work with multi-level (PAM-n) signals equally well. Here is an example with PAM-4:
- Transition time algorithm

• Pulse-Shape algorithm

Spectral Effects of Pulse Shaping

Pulse Shape affects Signal Waveform

It's time for a demo...

Pattern Definitions

- Random
 - uses the MATLAB "rand()" function to generate random bits/symbols
 - Works also for "odd" PAMs (e.g. PAM-3, PAM-5, PAM-6, etc.) where there is no 2^n mapping from bits
 - is not limited to a certain number of symbols and hence works well for demo purposes ;-)

• PRBS 2^n-1

- Standard PRBS patterns, can be used with NRZ or PAM4
- Be aware that the correct pattern length will likely require the sample rate to be adjusted

• SSPRQ, QPRBS-13, etc.

- Special patterns for PAM-4 testing. Same restrictions as with PRBS patterns
- User defined
 - Allows an arbitrary MATLAB expression to be specified as a pattern
 - E.g. [randi([0 3],1,128] will generate 128 random PAM-4 symbols. You can use variable names and functions from the MATLAB workspace, e.g. csvread()

Pattern from file

• Reads symbol values from a file. Values can be either 0 and 1 for NRZ or 0,1,2,3 for PAM4 or even decimal values for slight offsets from nominal signal levels (e.g. 0 1 0 1 0 0.9 0 1 0 1)

It's time for a demo...

Integer vs. Fractional Re-sampling

Integer vs. Fractional Re-sampling

32 Gbaud Signals and Beyond

Example: Symbol rate: 20 GSa/s, QPSK, raised cosine, α=1

slightly lower jitter for clean signals, but cannot add infinitesimally small amount of timing distortions

intrinsic jitter slightly higher, but distortions can be added smoothly

Integer vs. Fractional Re-sampling

M8195A Different Sample Factors

KEYSIGHT

It's time for a demo...

Theory of AWG Operation

Key Blocks and Specifications: Bandwidth

AWG Basics: Analog Bandwidth

Frequency Response

The 3 dB point defines the analog bandwidth

Keysight M8190A Arbitrary Waveform Generator Startup Assistance

Theory of AWG Operation

Key Blocks and Specifications: Dynamic Range/signal quality

KEYSIGHT

AWG Basics: Dynamic Range and Resolution

Quantisation and Quantisation Error

- A N-bit ADC has quantisation steps of $n = 2^N$.
- The Quantisation Error q of a signal with an Amplitude A is calculated using $q = \frac{A}{2^{N}-1}$.

Example for a signal with an amplitude of 1V at full scale:

- ✓ Vertical resolution for an 8-bit DAC is $n = 2^8 = 256$ steps.
- ✓ The quantisation Error is then calculated to $q = \frac{1V}{2^8 1} = 3.9 \ mV$
- ✓ Vertical resolution for an 10-bit DAC is $n = 2^{10} = 1024$ steps.
- ✓ The quantisation Error is then calculated to $q = \frac{1V}{2^{10}-1} = 0.98 \, mV$
- ✓ Often q is also called "quantisation noise" which can be analyzed easily within the frequency domain.

Quantization Noise Power Density vs. Sample Rate

 In the Keysight M8190A AWG, with 14 bits resolution at 8GSa/s and 12 bits at 12 GSa/s, quantization noise is negligible in front of other noise sources, however, it may not stand true for a 10 bit instrument running at the same speed.

AWG Basics: Non-Linearities

Theory of AWG Operation

- Real world DACs are not perfect and transfer function deviates from the ideal response.
- Linear component will not result in harmonic or inter-modulation distortion in the output waveform as opposed to the non-linear components.

AWG Basics: Non-Linearities

Frequency Domain

THD_%= $(\Sigma H_n^2)^{1/2}/S \times 100\%$, n=2...N, H_n and S are rms values 58

Effective Number of Bits or ENOB

Impairments limit AWG Dynamic Range !

<u>SFDR = Spurious Free Dynamic Range</u> <u>SINAD = ratio of the total signal power level (Signal + Noise + Distortion) to</u> <u>unwanted signal power (Noise + Distortion)</u>

 $SINAD_{dBc} = 10log_{10}(10^{-SNR/10} + 10^{-THD/10}), THD = 100xTHD_{\%}$

$$\mathsf{ENOB} = \left(\frac{SINAD - 10log(3|2)}{20log2}\right) = \frac{SINAD - 1.76}{6.02}$$

determines dynamic range Every Bit in DAC doubles the voltage resolution ~ 6 dB per bit

KEYSIGHT $SNR_{dBc} = 6.02N+1.76dB$, DC < f < FS/2

Effective Number of Bits or ENOB

What Sources are Included in the Calculation?

KEYSIGHT

Effective Number of Bits or ENOB

What does ENOB ignore?

- Testing is done with a sine wave (which has no harmonics)
- □ Effective bits *neglect* these sources of error:
 - □ Amplitude Flatness
 - Phase Linearity
 - □ Gain Accuracy
 - Offset Accuracy

High-Precision AWG Example

CW Signal

KEYSIGHT

High-Precision AWG Example:

Two-Tone Signal

Agilent 11:24:04 Oct 26, 2009 Marker Two-tone signal ▲ Mkr1 –10.00 MHz Select Marker Center 500 MHz -72.19 dB Ref -6 dBm Atten 10 dB Norm 1R Distance 10 MHz Log 10 Normal dB/ Fs = 7.2 GHzDelta Delta Pair (Tracking Ref) IMD: -72 dBc LgAv Ref W1 S2 S3 FC Span Pair Span Center AA ¢ **£**(f): Marker 🛆 FTun Off -10.000000 MHz Swp -72.19 dB More Center 500.00 MHz Span 50 MHz 1 of 2 VBW 30 kHz Sweep 67 ms (601 pts) #Res BW 30 kHz File Operation Status, A:\SCREN288.GIF file saved

It's time for a demo...

Arbitrary Waveform Generation Fundamentals

Frequency Response Correction

In-System Calibration

Conclusion & Summary

Corrections (1)

Types

Corrections	
Channel Specific Frequency and Phase Response	
Standard Cable	
	File

- Channel-specific frequency and phase response
 - Frequency and phase response has been characterized individually per channel and for different output amplitudes. Range is 32 GHz in 10 MHz steps.
 - Reference is the output connector.
 - Stored in the calibration flash.
- Standard cable corrections based on a typical high-quality, high-bandwidth 0.85m microwave cable (Huber+Suhner type M8041-61616)
- File with correction factors. Format is compatible with adaptive equalizer files exported in CSV format from the Keysight 89600 VSA.

Corrections (2)

File Format

// MyCorrectionFile InputBlockSize, 1024 // number of correction factors XStart, 1.0E+09 // first factor is at 1 GHz XDelta, 1.0E+06 // step size is 1 MHz YUnit, lin // lin: linear relative amplitude, dB: logarithmic relative amplitude Y 0.987, -0.2343 // amplitude, phase in radians 0.995, 0.5674 ...

1.269, -0.765

RF Cables Performance Matters!

Element Models affect correction Results

- Good element models (S-parameter) are critical to accurate de-embedding/correction results.
- One of the biggest pitfall of de-embedding is using questionable element models.
 - Always confirm the S-parameter represents your circuit components.
 - Don't assume model stays the same for similar parts. Performance can vary even they are the same component and circuit.
 - Verify the performance with Network Analyzer whenever possible.

Amplitude Correction

Multi-Tone Signal

Multi-tone signal with 200 tones, 3 GHz bandwidth

Fs = 7.2 GHz without amplitude correction

🛃 iqtone_gui		×					
Preset		¥					
Sample Rate (Hz)	7.2e9]					
# of samples	480	V Auto					
# of tones	200]					
Start Frequency (Hz)	15e6						
Stop Frequency (Hz)	3e9]					
Tone spacing (Hz)	1.5e+007]					
Phase	Random -]					
Notch frequency (Hz)	169	Votch					
Notch span (Hz)	100e6						
Notch depth (dB)	-300						
Apply correction							
Fc (calibration only)	6e9						
Display Do	wnioad Ca	librate					

Amplitude Correction

Frequency and phase response correction

Original Signal

With digital pre-distortion

#VBW 10 kHz

▲ Mkr1 –72 MHz

Span 3.58 GHz

Sweep 9.998 s (601 pts)

-59.24 dB

Depending on the bandwidth and carrier frequency, the flatness can be calibrated to around 0.1 dB flatness

Channel De-embedding

Using S-Parameters or measured in-system

KEYSIGHT

Channel Embedding

Using S-Parameters or measured in-system

ţŢ
Where is the Reference Plane?

AWG factory calibration

The desired reference plane location

It's time for a demo...

Arbitrary Waveform Generation Fundamentals

Frequency Response Correction

In-System Calibration

Conclusion & Summary

Built-in Vs. In-system Frequency/Phase Response Calibration

AWG

Built-in Cal table

Reference Plane

Built-in correction

- No calibration measurement required
- Additional circuits can be deembedded using S-parameters

In-system calibration

- More accurate
- One-time calibration measurement required
- Takes external circuitry into account
- Setup does not need to be modified

Cables.

adapters,

amplifiers,

etc.

Accurate and Repeatable Test Results

Out-of-the-box calibration to ensure clean signal at the front connector

In-situ calibration – extend clean signal to the receiver test point

- S-Parameters of channel are embedded or de-embedded
- Frequency/phase response is measured in-system and then de-embedded

QPSK, 32 Gbaud

Without correction

With correction

Without correction With correction

How Does In-system Calibration Work?

KEYSIGHT

How Is In-system Calibration Applied?

KEYSIGHT

It's time for a demo...

Arbitrary Waveform Generation Fundamentals

Frequency Response Correction

In-System Calibration

Conclusion & Summary

Review of the Previous

Key Blocks and Specifications

Which of the following is not true about AWGs?

- a) AWGs provide more flexibility in generating pulse shapes and predistortion than pulse generators typically do
- b) AWGs typically can't generate multiple carriers
- c) AWGs typically have wider modulation bandwidth vs signal generators
- d) AWGs typically have less dynamic range than signal generators

Which of the following is not true about AWGs?

- a) AWGs provide more flexibility in generating pulse shapes and predistortion than pulse generators typically do
- **b)** AWGs typically can't generate multiple carriers
- c) AWGs typically have wider modulation bandwidth vs signal generators
- d) AWGs typically have less dynamic range than signal generators

The sampling frequency for an AWG should be at least twice the highest frequency contained in the signal.

- a) True
- b) False
- c) Other...

The sampling frequency for an AWG should be at least twice the highest frequency contained in the signal.

- a) True
- b) False
- c) Other...

Using s-parameters to simulate the effects of running a signal through additional channels is called

- a) De-embedding
- b) Embedding

Using s-parameters to simulate the effects of running a signal through additional channels is called

- a) De-embedding
- **b)** Embedding

An AWG's playback time can be improved by

- a) Decreasing its sample rate
- b) Using other techniques such as sequencing
- c) Both of these could improve an AWG's playback time

An AWG's playback time can be improved by

- a) Decreasing its sample rate
- b) Using other techniques such as sequencing
- c) Both of these could improve an AWG's playback time

An AWG's reconstruction filter limits the bandwidth and "smooths out" the waveform.

- a) True
- b) False

An AWG's reconstruction filter limits the bandwidth and "smooths out" the waveform.

- a) True
- b) False

Thank you

