Vector Network Analyzers Fundamentals

Axel Hahn & Ansgar Lessmann

12/05/2022

Solutions Engineering – Keysight Technologies

1.02411

Agenda

- What is a Network Analyzer?
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Network Analysis is <u>NOT</u> the analysis of...

Computers, Network/protocol performance etc...

What is a Network Analyzer?

A network analyzer is an instrument that measures the <u>network parameters</u> of <u>electrical networks</u>.

Why Do We Need to Test Components?

 Verify specifications of "building blocks" for more complex RF systems

- Ensure distortionless transmission of communications signals
 - Linear: constant amplitude, linear phase / constant group delay
 - Nonlinear: harmonics, intermodulation, compression, X-parameters
- Ensure good match when absorbing power (e.g., an antenna)

Transmit Receive Design Challenges

- Output Power
- Operating Frequency
- Environment/Interference
- Noise

- Sensitivity

- Adjacent Channel Selectivity
- Operating Frequency
- Environment/Interference
- Noise
- Dynamic Range

End goal: maximize link budget, fidelity & efficiency

The Need for Both Magnitude and Phase

- 1. Complete characterization of linear networks
- 2. Complex impedance needed to design matching circuits

3. Complex values needed for device modeling

6. X-parameter (nonlinear) characterization

Agenda

- What is a Network Analyzer?
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Transmission Line Basics

- Low Frequencies
 - Wavelengths >> wire length
 - Current (I) travels down wires easily for efficient power transmission
 - Measured voltage and current not dependent on position along wire

- High Frequencies
 - Wavelength ~ or << length of transmission medium
 - Need transmission lines for efficient power transmission
 - Matching to characteristic impedance (Zo) is very important for low reflection and maximum power transfer
 - Measured envelope voltage dependent on position along line

Transmission line Z_o

- Z_o determines relationship between voltage and current waves
- Z_o is a function of physical dimensions and ε_r
- Z_o is usually a real impedance (e.g. 50 or 75 ohms)

For more information on transmission line basics: http://literature.cdn.keysight.com/litweb/pdf/5965-7917E.pdf

RF Energy Transmission

High-frequency Device Characterization

Reflection Parameters

Reflection Coefficient = $\Gamma = \frac{V_{reflected}}{V_{incident}} = \rho \angle \Phi = \frac{Z_L - Z_o}{Z_L + Z_o}$ $\rho = |\Gamma|$ Return loss = -20 log(ρ) Colloquially: Return loss = 20 log(ρ)

Voltage Standing Wave Ratio =
$$\frac{1+\rho}{1-\rho}$$
 Vmax

Reflection Parameters

Reflection Coefficient =
$$\Gamma = \frac{V_{reflected}}{V_{incident}} = \rho \angle \Phi = \frac{Z_L - Z_o}{Z_L + Z_o}$$

Voltage Standing Wave Ratio = $\frac{1 + \rho}{1 - \rho}$
No reflection
(ZL = Zo)
 $\int \frac{P}{(-)\infty \text{ dB}}$
 $\int \frac{RL}{D}$
 $\int \frac{D}{D} \frac{D}{D}$
Full reflection
(ZL = open, short)
 $\int \frac{P}{D}$
 $\int \frac{P}{D}$
 $\int \frac{D}{D} \frac{D}{D}$
 $\int \frac{D}{D} \frac{D}{D} \frac{D}{D}$
 $\int \frac{D}{D} \frac{D}{D} \frac{D}{D}$
 $\int \frac{D}{D} \frac{D}{$

Characterizing Unknown Devices

USING PARAMETERS (H, Y, Z, S) TO CHARACTERIZE DEVICES

- Gives linear behavioral model of our device
- Measure parameters (e.g. voltage and current) versus frequency under various source and load conditions (e.g. short and open circuits)
- Compute device parameters from measured data
- Predict circuit performance under any source and load conditions

Why Use Scattering, S-Parameters?

- Relatively easy to **obtain** at high frequencies
 - Measure voltage traveling waves with a vector network analyzer
 - Don't need shorts/opens (can cause active devices to oscillate or self-destruct)
- Relate to familiar measurements (gain, loss, reflection coefficient ...)
- Can cascade S-parameters of multiple devices to predict system performance
- Can compute H-, Y-, or Z-parameters from S-parameters if desired
- Can easily import and use S-parameter files in electronic-simulation tools

Measuring S-Parameters

Equating S-Parameters With Common Measurement Terms

 S_{11} = forward reflection coefficient *(input match)* S_{22} = reverse reflection coefficient *(output match)* S_{21} = forward transmission coefficient *(gain or loss)* S_{12} = reverse transmission coefficient *(isolation)*

Remember S-parameters are inherently complex, linear quantities – however, we often express them in a log-magnitude format

Smith Chart Review

Agenda

- What is a Network Analyzer?
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Generalized Network Analyzer Block Diagram

Source

- Supplies stimulus for system
- Can sweep frequency or power
- Traditionally NAs had one signal source
- Modern NAs have the option for a second internal source and/or the ability to control external source
 - Can control an external source as a local oscillator (LO) signal for mixers and converters
 - Useful for mixer measurements like conversion loss, group delay

Signal Separation

- Measure incident signal for reference
- Separate incident and reflected signals

splitter

Directional Coupler & Directivity

 Directivity is a measure of how well a directional coupler or bridge can separate signals moving in opposite directions

Interaction of Directivity with the DUT

(WITHOUT ERROR CORRECTION)

Receivers

NARROWBAND DETECTION - TUNED RECEIVER

IF Bandwidth

Dynamic Range and Accuracy

ERROR DUE TO INTERFERING SIGNAL

Dynamic range is very important for measurement accuracy!

Modern VNA Block Diagram (2-Port PNA-X)

Processor / Display

- Markers
- Limit lines
- Pass/fail indicators
- Linear/log formats
- Grid/polar/Smith charts
- Time-domain transform
- Trace math

Multiport Measurement Architectures

Application Examples

- RF front end modules / antenna switch modules
- Channel measurements of MIMO antennas
- Interconnects (ex. cables, connectors)
- General-purpose multiport devices

PXI Multiport VNA

PXI Multi-site VNA

DUT BI DUT BI

Key Features

- True multiport VNA with independent modules
- Improved throughput
- High performance without external switches
- Full N-port correction
- Reconfigurable to multiport or multisite

Agenda

- What is a Network Analyzer?
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

Linear Versus Nonlinear Behavior

Linear behavior:

- Input and output frequencies are the same (no additional frequencies created)
- Output frequency only undergoes magnitude and phase change

Nonlinear behavior:

- Output frequency may undergo frequency shift (e.g. with mixers)
- Additional frequencies created (harmonics, intermodulation)

For more information on linear vs. non-linear basics: http://literature.cdn.keysight.com/litweb/pdf/5965-7917E.pdf

Gain Compression

- Parameter to define the transition between the linear and nonlinear region of an active device.
- The compression point is observed as x dB drop in the gain with VNA's power sweep.

Time vs. Frequency Domain

S11 RESPONSE OF SEMIRIGID COAX CABLE

- Why time domain?
 - Locate faults
 - Identify passive or inductive circuit elements
 - Identify and remove unwanted fixture responses
 - And more...

For more information on time domain basics: http://literature.cdn.keysight.com/litweb/pdf/5989-5723EN.pdf?id=923465

Agenda

- What is a Network Analyzer?
- Transmission Lines and S-Parameters
- Network Analyzer Block Diagram
- Network Analysis Measurements
- Calibration and Error Correction

The Need For Calibration

- Why do we have to calibrate?
 - It is impossible to make perfect hardware
 - It would be extremely difficult and expensive to make hardware good enough to entirely eliminate the need for error correction

How do we get accuracy?

- With vector-error-corrected calibration
- Not the same as the yearly instrument calibration
- What does calibration do for us?
 - Removes the largest contributor to measurement uncertainty: systematic errors
 - Provides best picture of true performance of DUT

Measurement Error Modeling

Systematic Errors

CAL

- Due to imperfections in the analyzer and test setup
- Assumed to be time invariant (predictable)
- Generally, are largest sources or error
- Random Errors
 - Vary with time in random fashion (unpredictable)
 - Main contributors: instrument noise, switch and connector repeatability
- Drift Errors

٠

- RECAL
- Due to system performance changing after a calibration has been done
- Primarily caused by temperature variation

Systematic Measurement Errors

Six forward and six reverse error terms yields 12 error terms for two-port devices

Types of Error Correction

Response (normalization)

- Simple to perform
- Only corrects for tracking (frequency response) errors
- Stores reference trace in memory, then does data divided by memory

Vector

- Requires more calibration standards
- Requires an analyzer that can measure phase
- Accounts for all major sources of systematic error

thru

Significance of Calibration

TYPES OF CALIBRATION

UNCORRECTED DUT

RESPONSE

- Convenient
- Generally not accurate
- No errors removed

- Easy to perform ٠
- Use when highest ٠ accuracy is not required
- Removes frequency response error

ENHANCED RESPONSE

- Combines response and 1-port ٠
- Corrects source match for transmission measurements •

1-PORT

SHORT	
OPEN	
LOAD	

DUT

For reflection measurements

accuracy with 2-port devices

Removes these errors:

Source match

Reflection tracking

Directivity

•

Need good termination for high

FULL 2-PORT

SHORT		SHORT
OPEN		OPEN
LOAD	۲	LOAD

Defined Thru or Unknown Thru

- Highest accuracy ٠
- Removes these errors:
 - Directivity •
 - Source/load match
 - Reflection tracking ٠
 - Transmission tracking
 - Crosstalk (limited by noise)

Using Known Standards to Correct for Systematic Errors

Response calibration (normalization)

- Only one systematic error term measured
- Reflection tracking
- 1-port calibration (reflection measurements)
 - Only three systematic error terms measured
 - Directivity, source match, and reflection tracking

• Full two-port calibration (reflection and transmission measurements)

- Twelve systematic error terms measured
- 10 measurements on four known standards (SOLT)
- 7 measurements using Unknown Thru; 4 measurements using QSOLT

Standards defined in cal kit definition file

Network analyzer contains standard cal kit definitions

CAL KIT DEFINITION MUST MATCH ACTUAL CAL KIT USED!

User-built standards must be characterized and entered into user cal-kit

VNA showing Band Pass Filter

UNCALIBRATED, RESPONSE CAL AND FULL 2 PORT CAL

Measuring filter insertion loss

KEYSIGHT TECHNOLOGIES

